# Al-Cu-Gd (Aluminum-Copper-Gadolinium)

V. Raghavan

Studies of this system by [1988Pre] gave an isothermal section at 497 °C (770 K), depicting several ternary compounds. [2001Gum] identified new ternary compounds and refined the structure of the previously known compounds. They constructed an isothermal section at 597 °C (870 K), depicting seven ternary compounds and significant solubility of the third component in several binary compounds. This system is included in the review of Al-Cu-RE systems by [2004Ria].

# **Binary Systems**

The Al-Cu phase diagram [1998Liu] depicts a number of intermediate phases: CuAl<sub>2</sub> (*C*16-type tetragonal, denoted  $\theta$ ), CuAl ( $\eta_1$ , orthorhombic), CuAl ( $\eta_2$ , monoclinic), Cu<sub>5</sub>Al<sub>4</sub>(LT) ( $\zeta$ , orthorhombic),  $\varepsilon_2$  (*B*8<sub>2</sub>, Ni<sub>2</sub>In-type hexagonal),  $\varepsilon_1$  (bcc), Cu<sub>3</sub>Al<sub>2</sub> ( $\delta$ , rhombohedral), Cu<sub>9</sub>Al<sub>4</sub>(HT) ( $\gamma_0$ , *D*8<sub>2</sub>, Cu<sub>5</sub>Zn<sub>8</sub>-type cubic), Cu<sub>9</sub>Al<sub>4</sub>(LT) ( $\gamma_1$ , *D*8<sub>3</sub>-type cubic), and Cu<sub>3</sub>Al ( $\beta$ , bcc). In the above, HT = high-temperature and LT = low-temperature. The Al-Gd system [Massalski2] has the following intermediate phases GdAl<sub>3</sub> (*D*0<sub>19</sub>, Ni<sub>3</sub>Sn-type hexagonal), GdAl<sub>2</sub> (*C*15, MgCu<sub>2</sub>-type cubic), GdAl

(ErAl-type orthorhombic),  $Gd_3Al_2$  (Zr<sub>3</sub>Al<sub>2</sub>-type tetragonal), and  $Gd_2Al$  (*C*23, Co<sub>2</sub>Si-type orthorhombic). The Cu-Gd phase diagram [Massalski2, 2004Ria] depicts the following intermediate phases: GdCu<sub>6</sub>,  $\beta$ GdCu<sub>5</sub> (*D*2<sub>d</sub>, CaCu<sub>5</sub>-type hexagonal),  $\alpha$ GdCu<sub>5</sub> (AuBe<sub>5</sub>-type cubic), Gd<sub>2</sub>Cu<sub>9</sub> (monoclinic), GdCu<sub>2</sub> (CeCu<sub>2</sub>-type orthorhombic), and GdCu (*B*2, CsCl-type cubic).

### **Ternary Phases**

[2001Gum] identified four new ternary compounds in this system and refined the crystal structures of two previously known compounds. The structural details of seven compounds, numbered 1 to 7 by [2001Gum] (denoted  $\tau_1$  to  $\tau_7$  here) are given in Table 1.

# **Isothermal Section**

With starting metals of 99.95 mass % Al, 99.95 mass % Cu, and 99.5 mass % Gd, [2001Gum] prepared 38 ternary

| Phase                                                                                                                        | Composition, atomic % | Pearson symbol | Space group  | Prototype                                                | Lattice parameter, nm |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|--------------|----------------------------------------------------------|-----------------------|
| GdCu <sub>4.7-4.9</sub> Al <sub>7.3-7.1</sub> (τ <sub>1</sub> )                                                              | 56.2-54.6 Al          | <i>tI</i> 26   | I4/mmm       | ThMn <sub>12</sub>                                       | a = 0.87559           |
|                                                                                                                              | 36.2-37.7Cu           |                |              |                                                          | c = 0.51445 (a)       |
|                                                                                                                              | 7.7 Gd                |                |              |                                                          |                       |
| $GdCu_{7.8}Al_{3.2}(\tau_2)$                                                                                                 | 26.7 Al               | <i>tI</i> 48   | $I4_1/amd$   | BaCd <sub>11</sub>                                       | a = 1.02694           |
|                                                                                                                              | 65 Cu                 |                |              |                                                          | c = 0.66054           |
|                                                                                                                              | 8.3 Gd                |                |              |                                                          |                       |
| $GdCu_{6.6}Al_{4.4}(\tau_3)$                                                                                                 | 36.7 Al               | $oF^*$         | Fddd         | Tb(Cu <sub>0.58</sub> Al <sub>0.42</sub> ) <sub>11</sub> | a = 1.43034           |
|                                                                                                                              | 55 Cu                 |                |              |                                                          | b = 1.49617           |
|                                                                                                                              | 8.3 Gd                |                |              |                                                          | c = 0.65736           |
| $Gd_2Cu_{9,4\text{-}6.7}Al_{7,6\text{-}10.3}(\tau_4)$                                                                        | 40-54.2 Al            | hR57           | R3m          | $Th_2Zn_{17}$                                            | a = 0.88300           |
|                                                                                                                              | 49.5-35.3 Cu          |                |              |                                                          | c = 1.28568 (b)       |
|                                                                                                                              | 10.5Gd                |                |              |                                                          |                       |
| $Gd_{3}Cu_{2.1}Al_{8.9}\;(\tau_{5})$                                                                                         | 63.6 Al               | oI28           | Immm         | La <sub>3</sub> Al <sub>11</sub>                         | a = 0.42398           |
|                                                                                                                              | 15 Cu                 |                |              |                                                          | <i>b</i> = 1.25533    |
|                                                                                                                              | 21.4 Gd               |                |              |                                                          | c = 0.99393           |
| $GdCu_{0.9}Al_{2.1}(\tau_6)$                                                                                                 | 52.5 Al               | hR36           | R3m          | PuNi <sub>3</sub>                                        | a = 0.55153           |
|                                                                                                                              | 22.5 Cu               |                |              |                                                          | c = 2.5519            |
|                                                                                                                              | 25 Gd                 |                |              |                                                          |                       |
| $GdCuAl(\tau_7)$                                                                                                             | 33.3 Al               | hP9            | $P\bar{6}2m$ | ZrNiAl                                                   | a = 0.7051            |
|                                                                                                                              | 33.3 Cu               |                |              |                                                          | c = 0.4060            |
|                                                                                                                              | 33.3 Gd               |                |              |                                                          |                       |
| <ul> <li>(a) At GdCu<sub>4.7</sub>Al<sub>7.3</sub></li> <li>(b) At Gd<sub>2</sub>Cu<sub>9.4</sub>Al<sub>7.6</sub></li> </ul> |                       |                |              |                                                          |                       |

 Table 1
 Al-Cu-Gd crystal structure and lattice parameter data [2001Gum]



Fig. 1 Al-Cu-Gd isothermal section at 597 °C (870 K) [2001Gum]

alloys by arc-melting under Ar atm. The alloys were annealed at 597 or at 497 °C for 1000 h and quenched in water. The phase analysis was carried out with x-ray powder diffraction. The same seven ternary compounds were found at both temperatures. The ternary compound GdCuAl<sub>3</sub> reported by [1988Pre] with the Al<sub>4</sub>Ba-type tetragonal structure was not found by [2001Gum] at 597 or 497 °C. The isothermal section at 597 °C (870 K) constructed by [2001Gum] for Gd content up to 33.3 at. % is shown in Fig. 1. Along the Al-Cu side, at this temperature, the liquid phase (L) is present instead of  $\theta$ . The ternary compounds are shown at the compositions listed by [2001Gum]. The binary compound GdCu<sub>5</sub> and GdCu<sub>2</sub> dissolve up to 50 and 4 at. % Al, respectively. GdAl<sub>2</sub> dissolves up to 5 at. % Cu.

#### References

- **1988Pre:** A.P. Prevarskii and Yu. B. Kuzma, X-ray Structural Investigation of the System Gd-Cu-Al, *Metally*, 1988, (1), p 207-210 in Russian; TR: *Russ. Metall.*, 1988, (1), p 205-207
- **1998Liu:** X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Phase Equilibria in the Cu-Rich Portion of the Cu-Al Binary System, *J. Alloys Compd.*, 1998, **264**, p 201-208
- 2001Gum: R.V. Gumeniuk, B.M. Stelmakhovych, and Yu.B. Kuzma, The Gd-Cu-Al System, J. Alloys Compd., 2001, 329, p 182-188
- **2004Ria:** P. Riani, L. Arrighi, R. Marazza, D. Mazzone, G. Zanicchi, and R. Ferro, Ternary Rare-Earth Aluminum Systems with Copper: A Review and a Contribution to Their Assessment, *J. Phase Equilb. Diffus.*, 2004, **25**(1), p 22-52